2 resultados para Anaphylatoxin C5a

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atherosclerosis is an inflammatory disease characterized by accumulation of lipids in the inner layer of the arterial wall. During atherogenesis, various structures that are recognized as non-self by the immune system, such as modified lipoproteins, are deposited in the arterial wall. Accordingly, atherosclerotic lesions and blood of humans and animals with atherosclerotic lesions show signs of activation of both innate and adaptive immune responses. Although immune attack is initially a self-protective reaction, which is meant to destroy or remove harmful agents, a chronic inflammatory state in the arterial wall accelerates atherosclerosis. Indeed, various modulations of the immune system of atherosclerosis-prone animals have provided us with convincing evidence that immunological mechanisms play an important role in the pathogenesis of atherosclerosis. This thesis focuses on the role of complement system, a player of the innate immunity, in atherosclerosis. Complement activation via any of the three different pathways (classical, alternative, lectin) proceeds as a self-amplifying cascade, which leads to the generation of opsonins, anaphylatoxins C3a and C5a, and terminal membrane-attack complex (MAC, C5b-9), all of which regulate the inflammatory response and act in concert to destroy their target structures. To prevent uncontrolled complement activation or its attack against normal host cells, complement needs to be under strict control by regulatory proteins. The complement system has been shown to be activated in atherosclerotic lesions, modified lipoproteins and immune complexes containing oxLDL, for instance, being its activators. First, we investigated the presence and role of complement regulators in human atherosclerotic lesions. We found that inhibitors of the classical and alternative pathways, C4b-binding protein and factor H, respectively, were present in atherosclerotic lesions, where they localized in the superficial proteoglycan-rich layer. In addition, both inhibitors were found to bind to arterial proteoglycans in vitro. Immunohistochemical stainings revealed that, in the superficial layer of the intima, complement activation had been limited to the C3 level, whereas in the deeper intimal layers, complement activation had proceeded to the terminal C5b-9 level. We were also able to show that arterial proteoglycans inhibit complement activation in vitro. These findings suggested to us that the proteoglycan-rich layer of the arterial intima contains matrix-bound complement inhibitors and forms a protective zone, in which complement activation is restricted to the C3 level. Thus, complement activation is regulated in atherosclerotic lesions, and the extracellular matrix is involved in this process. Next, we studied whether the receptors for the two complement derived effectors, anaphylatoxins C3a and C5a, are expressed in human coronary atherosclerotic lesions. Our results of immunohistochemistry and RT-PCR analysis showed that, in contrast to normal intima, C3aR and C5aR were highly expressed in atherosclerotic lesions. In atherosclerotic plaques, the principal cells expressing both C3aR and C5aR were macrophages. Moreover, T cells expressed C5aR, and a small fraction of them also expressed C3aR, mast cells expressed C5aR, whereas endothelial cells and subendothelial smooth muscle cells expressed both C3aR and C5aR. These results suggested that intimal cells can respond to and become activated by complement-derived anaphylatoxins. Finally, we wanted to learn, whether oxLDL-IgG immune complexes, activators of the classical complement pathway, could have direct cellular effects in atherogenesis. Thus, we tested whether oxLDL-IgG immune complexes affect the survival of human monocytes, the precursors of macrophages, which are the most abundant inflammatory cell type in atherosclerotic lesions. We found that OxLDL-IgG immune complexes, in addition to transforming monocytes into foam cells, promoted their survival by decreasing their spontaneous apoptosis. This effect was mediated by cross-linking Fc receptors with ensuing activation of Akt-dependent survival signaling. Our finding revealed a novel mechanism by which oxLDL-IgG immune complexes can directly affect the accumulation of monocyte-macrophages in human atherosclerotic lesions and thus play a role in atherogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aortic valve stenosis (AS) is an active disease process akin to atherosclerosis, with chronic inflammation, lipid accumulation, extracellular matrix remodeling, fibrosis, and extensive calcification of the valves being characteristic features of the disease. The detailed mechanisms and pathogenesis of AS are still incompletely understood, however, and pharmacological treatments targeted toward components of the disease are not currently available. In this thesis project, my coworkers and I studied stenotic aortic valves obtained from 86 patients undergoing valve replacement for clinically significant AS. Non-stenotic control valves (n=17) were obtained from patients undergoing cardiac transplantation or from organ donors without cardiac disease. We identified a novel inflammatory factor, namely mast cell, in stenotic aortic valves and present evidence showing that this multipotent inflammatory cell may participate in the pathogenesis of AS. Using immunohistochemistry and double immunofluorescence stainings, we found that a considerable number of mast cells accumulate in stenotic valves and, in contrast to normal valves, the mast cells in diseased valves were in an activated state. Moreover, valvular mast cells contained two effective proteases, chymase and cathepsin G, which may participate in adverse remodeling of the valves either by inducing fibrosis (chymase and cathepsin G) or by degrading elastin fibers in the valves (cathepsin G). As chymase and cathepsin G are both capable of generating the profibrotic peptide angiotensin II, we also studied the expression and activity of angiotensin-converting enzyme (ACE) in the valves. Using RT-PCR, imunohistochemistry, and autoradiography, we observed a significant increase in the expression and activity of ACE in stenotic valves. Besides mast cell-derived cathepsin G, aortic valves contained other elastolytic cathepsins (S, K, and V). Using immunohistochemistry, RT-PCR, and fluorometric microassay, we showed that the expression and activity of these cathepsins were augmented in stenotic valves. Furthermore, in stenotic but not in normal valves, we observed a distinctive pattern of elastin fiber degradation and disorganization. Importantly, this characteristic elastin degradation observed in diseased valves could be mimicked by adding exogenous cathepsins to control valves, which initially contained intact elastin fibers. In stenotic leaflets, the collagen/elastin ratio was increased and correlated positively with smoking, a potent AS-accelerating factor. Indeed, cigarette smoke could also directly activate cultured mast cells and fibroblasts. Next, we analyzed the expression and activity of neutral endopeptidase (NEP), which parallels the actions of ACE in degrading bradykinin (BK) and thus inactivates antifibrotic mechanisms in tissues. Real-time RT-PCR and autoradiography revealed NEP expression and activity to be enhanced in stenotic valves compared to controls. Furthermore, both BK receptors (1 and 2) were present in aortic valves and upregulated in stenotic leaflets. Isolated valve myofibroblasts expressed NEP and BK receptors, and their upregulation occurred in response to inflammation. Finally, we observed that the complement system, a source of several proinflammatory mediators and also a potential activator of valvular mast cells, was activated in stenotic valves. Moreover, receptors for the complement-derived effectors C3a and C5a were expressed in aortic valves and in cultured aortic valve myofibroblasts, in which their expression was induced by inflammation as well as by cigarette smoke. In conclusion, our findings revealed several novel mechanisms of inflammation (mast cells and mast cell-derived mediators, complement activation), fibrosis (ACE, chymase, cathepsin G, NEP), and elastin fiber degradation (cathepsins) in stenotic aortic valves and highlighted these effectors as possible pathogenic contributors to AS. These results support the notion of AS as an active process with inflammation and extracellular matrix remodeling as its key features and identify possible new targets for medical therapy in AS.